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A new finite element method for solving important linear and nonhnear boundary value 
problems arising in computational physics is described in this paper. The method is designed 
to handle general three-dimensional regions, boundary conditions, and material properties. 
The boundaries are described by piecewise planar surfaces on which boundary conditions are 
imposed. The method uses box finite elements defined by a Cartesian grid that is independent 
of :he boundary definition. Local refinements are performed by dividing a box element into 
eight similar box elements. The discretization uses trihnear approximations on the box 
elements with special element stiffness matrices for boxes cut by any boundary surface. This 
discretization process is automated and does not require the generation of a boundary con- 
forming grid. The resulting (possibly nonlinear) discrete system is so!ved using a precondi- 
tioned GMRES algorithm. The primary preconditioner is a sparse matrix solver using a 
dynamic drop tolerance in the decomposition phase. Results are presented for aerodynamics 
problems with up to 400,000 elements. demonstrating the accuracy and efficiency of the method. 
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1. INTRODUCTION 

Many engineering designs are geometrically complex. Commercial aircraft, for 
example, have nacelles, stabilizers, slats, flaps, and ailerons, in addition to wir~gs 
and fuselages. The geometry of typical military aircraft can be even more complex. 
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The design of such complex configurations presents challenging mathematical 
modeling problems in aerodynamics, acoustics, electromagnetics, and structures. 
Often, these problems take the form of partial differential equations on unbounded 
domains with many types of boundary conditions depending on the application. 
Also, geometric and physical complexity of the problem requires a large number of 
degrees of freedom. For transonic flow about a complete aircraft involving shocks 
and slip surfaces, several hundred thousand degrees of freedom are required by 
standard second-order finite element, finite volume, or finite difference methods to 
produce accurate answers in the entire flow field. 

A computational method for such problems should be reliable, accurate, flexible, 
and efficient. In two space dimensions, for elliptic boundary value problems, adap- 
tive finite element methods can meet such criteria [l-4]. In three space dimensions, 
panel methods (boundary integral methods) can have the desired degree of 
geometry flexibility, but are limited to linear flow [S]. In this paper, the full poten- 
tial equation was chosen because it models important nonlinear effects and was well 
enough understood to allow development of a truly reliable engineering tool. 

Many methods in aerodynamics have used body fitted structured or block struc- 
tured grids that allow each grid cell to be treated in a similar fashion with minimal 
storage [6-91. This introduces the subsidiary problem of generating a body 
conforming grid. A second approach that allows arbitrary refinement is to use 
tetrahedral finite elements [lO-141. This approach also requires the generation of 
a body conforming mesh. 

A third approach uses Cartesian grids with special operators near the boundary 
[ 15-201. We have chosen to use this approach because the body fitted grid genera- 
tion problem is eliminated. The method presented in this paper is a finite element 
method that uses rectangular box elements. The finite element formulation enables 
us to construct special boundary operators easily. The grid is based on a uniform 
Cartesian global grid with local refinement. Because problems of practical interest 
often have many different length scales, this local grid refinement is essential. 
A refinement is made by dividing a given box element into eight similar boxes. In 
this way every element that does not intersect the boundary is geometrically similar 
and has an identical element stiffness matrix, minimizing storage. 

An important feature of many of the problems we consider is the presence of a 
non-local far field condition, e.g., the Sommerfeld radiation condition. The use of 
a Green’s function defined on a uniform global grid in conjunction with the fast 
fourier transform allows the boundary of the computational grid to be very close 
to the object [2&23]. This greatly reduces the number of finite elements needed to 
solve a given problem. 

To ensure robust convergence, we have developed a solution procedure for the 
discrete equations that employs a combination of two preconditioners for a 
GMRES driver [24,25]. One of these preconditioners is a sparse direct solver with 
a drop tolerance [26]. The other is a Poisson solver on the uniform global grid 
that ensures that the far field boundary condition is satisfied [27]. 

In Section 2 we define the aerodynamics problem to be considered. Section 3 
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contains a discussion of the discretization. Section 4 describes the octtrce data 
structure used to store the refinements. Section 5 gives the solution procedure fog 
iinear problems. Section 6 discusses the sparse linear algebra used in one of the 
preconditioners. Section 7 presents computational results for linear problems in 
aerodynamics. Section 8 contains a description of the iterative algorithm used for 
the nonlinear full potential equation of aerodynamics. Section 9 presents resuits for 
some aerodynamic transonic flow cases. The computationai cost of our implemen- 
tation of the method is discussed in Section IO. Section 1: discusses two orher 
application areas, acoustics and electromagnetics, where this method has been 
applied. Section 12 discusses useful features not described in this paper. This is 
followed with concluding remarks. 

2. PROBLEM DEFINITIQN 

The full potential equation of aerodynamics is 

F(@)EV.pv@=o, 

where the density is given by 

Here, with V, taken to be a uniform onset flow, @ is the total velocity potential 
lo be determined, q = I/V@ 11 2 is the local speed, q ~ = I/V 3c 11 2 is the freestream spee 
Px is the freestream density, M, is the freestream Mach number, and 7 is the ratio 
of specific heats. Equation (1) describes irrotational compressible flow. In addition, 
boundary conditions are required to define a well-posed problem. The far field 
condition is 

2s .x--f -w#, i.e., upstream of the object. Here, the perturbation potentiai is given 
byq5=@-o*, where V@, = V, . On impermeable surfaces, the normai mass flux 
condition is ~(&B/r?n) = 0. On other surfaces, such as engine inlets, the normal mass 
flux is a specified function, ~(&Dj&z) = g,. On other surfaces we impose the 

irichlet condition @ = g,. On engine exhaust surfaces, tangential flow can be 
prohibited by specifying g, to be constant. Wake surfaces must extend downstream 
from lifting components such as wings. These surfaces allow nonzero circulation in 
potential flow and can be thought of as thin sheets of concentrated vorticity C28-3 
The boundary conditions on a wake are 
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and 

Ap=O, (5) 

where 

and A represents the jump across the wake surface. Equations (4) is an expression 
of conervation of mass across the wake. Equation (5) is required for conservation 
of normal momentum. Equation (5) is often linearized about the freestream 
pressure p = p ocI, assuming small perturbation velocity Vqi This leads to the 
equivalent Dirichlet condition that d@ is constant along the wake in the direction 
of v,. The circulation ,U at the trailing edge is determined by a Kutta condition 
imposed there. 

The full potential equation is a consequence of the Bateman variational principle, 
namely, that the integral of pressure over the flow field is stationary [29]. This prin- 
ciple can be used to derive finite element formulas for the full potential equation as 
described below in Section 3.4. In subsonic flow, the Bateman integral is maximized. 
A generalization of the Bateman variational principle which incorporates the 
boundary conditions described above is that the functional 

is stationary. Here, g, is the given mass flux data on dQ1, d@ is the jump in Q, 
across the wake surface 1%2~, p is the unknown representing the jump in @ on &2, 
determined by Eq. (5), CI denotes the average of the upper surface and lower surface 
values, and g, is the given Dirichlet data on ~752~. The function p is itself unknown 
and is determined by Eq. (5). To achieve a stable numerical formulation, the treat- 
ment of Dirichlet boundary conditions and wake surfaces must be modified. In 
addition, the natural Neumann condition must be modified to account for bound- 
ary curvature, since the solution is often sensitive to this quantity and the boundary 
is discretized using flat panels. These modifications are described below in 
Section 3.6. 

A minor modification of the above formulation allows the simulation of flows 
involving regions of differing total temperature and pressure. The flow in each 
separate region is still potential as long as total temperature and pressure are 
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constant in the region, but pressure and density must be redefined in the following 
way: 

Here, rp is the ratio of the total pressure in the region to the freestream total 
pressure and I’~ is the ratio of total temperature in the region to freestream totai 
temperature. The regions are assumed to be separated by fixed wake surfaces on 
which two jump boundary conditions are applied. The first is the standard static 
pressure continuity condition equation (5). If the total pressure and/or temperature 
differences across the wake are large, the pressure formula cannot be linearized, i.e., 
9 is not constant in the downstream direction. The second condition is similar to 
Eq. (4) but requires a modification to make the answer fess sensitive to wake 
position when total pressure and temperature differences are large. Equation (4) is 
replaced by 

where 

W*A+V@. ( d I ‘) 

Here, q. is the velocity magnitude which makes p = pX in the given region and. .pO 
is the density at this velocity. Equation (4) becomes a natural jump boundary 
condition for @* = qm @j/q0 if the Bateman Principle is modified so that 

where 

3. DISCRETIZATION 

In this section, we describe the discretization of the variational problem using 
finite elements on a grid consisting of rectangular boxes. First, the computational 
grid and its generation are described. This is followed by a description of the 
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element trial functions. The restriction to a finite computational grid is then 
justified. Then, the derivation of element stiffness matrices and the treatment of the 
density p are described. Grid interfaces between different levels of refinement are 
then discussed, followed by discussions of modifications of the Bateman principle 
and of artificial dissipation. 

3.1. Computational Grid 

The boundary surfaces of objects to be modeled are described using networks of 
locally flat surface patches called panels [5]. This input format allows relatively 
simple specification of complicated surfaces. Various boundary conditions can be 
specified on these surfaces. Different formulas for density can also be specified on 
either side of these boundary surfaces. This panel description is identical to the 
input format of panel method codes that are extensively used for linear flow 
analysis [S]. Once an input is prepared, a panel method linear flow analysis, a full 
potential solution, an acoustic analysis, and an electromagnetic analysis (see 
Section II) can all be performed. Current geometry software can easily generate 
panelings that are sufliciently dense to make’the piecewise flat panel assumption a 
negligable source of error compared to other discretization errors. The volume grid, 
on the other hand, is generated automatically and can be controlled using certain 
criteria. The process for constructing the grid is described below. 

We start with a coarse uniform rectangular grid, called the global grid, that 
contains all boundary surfaces but is otherwise independent of the boundary 
surfaces. It is assumed that outside this global grid, the discrete finite element 
operator can be approximated by some constant coeflicient linear operator (see 
Section 3.3 below). The global grid is used in enforcing the far field condition and 
for one of the preconditioners (see Section 3.5 below). The global grid is locally 
relined in a hierarchical manner, i.e., any grid box can be refined into eight 
geometrically similar boxes of equal volume. This process is repeated to give a grid 
with any desired local resolution and is controlled by two criteria. 

The first criterion for local refinement is based on the length scale of the surface 
panels used to describe the boundary. Every box element that is sufficiently close 
to a panel is refined if some weighted length scale associated with the panel is 
smaller than the length scale associated with that box element. This criterion is 
effective in providing local refinement near the boundary surface. In this way, it 
is possible to provide denser surface paneling to effect more local refinement near 
certain parts of the boundary if it is known that the solution will have stronger 
gradients in that region. 

The second criterion allows refinement away from boundary surfaces. Special 
“regions of interest or disinterest” can be prescribed, each with desired minimum 
and maximum refinement levels. All the box elements in these special regions are 
relined recursively until the minimum level is reached. Further refinement depends 
on the first criterion. The special regions are hexahedral and provide a fair amount 
of flexibility in generating off surface refinement. Such refinement is useful in 
problems where large gradients such as shock waves may exist away from the 
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boundary surfaces. Solution adaptivity significantly augments these two grid 
refinement criteria and will be described elsewhere. 

Once all specified refinements are done, the grid is “legalized” so that two boxes 
abutting on a face or an edge differ by at most one refinement level. This ensues 
sparse stencils for the finite element operators and simplifies certam data structures 
[30], but allows sufficiently rapid changes in grid level. 

The locally refined box elements formed by the process described above are 
usually an unstructured collection of box elements. However, these elements are 
completely described by an octtree data structure [31. 321, described in detail; in 
Section 4 below, to minimize storage. 

3.2. Element Trial Functions 

The boundary value problem is discretized using a finite element method based 
on this grid. Every element is identical geometrically except for a scale factor. The 
element trial function is the standard trilinear one parameterized ny eight 
unknowns, one located at each corner of the box element as shown in Fig. 1. In 
order to generate as compact a stencil as possible, we wanted the trial functions to 
generate the standard seven-point operator for Poisson’s equation on a ~uniform 
grid. This can be accomplished by adding certain second-order terms to the trihnear 
trial function as given in Fig. 2. These terms introduce no additional degrees of 
freedom. Moreover, they vanish on all faces of the element and thus do not affect 
the continuity of the basis. 

3.3. Fii’nite Compiltational Domain 

The restriction to a finite computational domain can be justified in the foilowing 
way. Suppose that the partial differential operator 9 is equal to a constant coef 
Gcient differential operator Y everywhere outside a finite rectangular region. Let 5 
be a Green’s function for 5 such that Y(9 * Q) = Q for all Q, where * is the 

FK. 1. Box finite e1emer.t with eight corner ucknciwns. 
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@(X,Y,Z> = 
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+ 
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FIG. 2. The element trial function in terms of its values at the eight corners of the element. 
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convolution operator. We further assume that @ = 9 * Q satisfies the far field 
condition for all Q which are identically zero outside the finite box. (This will be 
the case if Y satisfies the far field condition.) Then the origrnal differential equation 
9@ = 0 is equivalent to 

Q+(F-3)9*Q=O. ilrc) 

Outside the finite rectangular region, .F = .F so that Q = 0. Thus, the unknowns 
Q are confined to a bounded region. If the continuous operators are replaced by 
discrete ones, the same argument holds. Thus, the computational grid can be 
restricted to the region where the discrete operator F is not approximated well by 
a discrete far field operator T. The requirement on T is that a discrete Greens 
function C be available that satisfies an appropriate iscrete far field condition and 
T(G * Q) = Q for all Q. In practice, this means that T is a constant coefficient 
elliptic operator discretized on a uniform Cartesian grid 120-23, 271. Thus: fo. 
full potential equation, the computational domain need only cover the region w 
nonlinear flow occurs. For a wing in transonic flow, the grid typically terminates 
one or two chord lengths away. (Wakes, which extend to infinity, are an exception 
which produce sources and sinks that extend to infinity downstream of the 
configuration. By assuming that such sources and sinks are constant in the 
downstream direction, their influence can be computed by using a downstream 
Green’s function [27]. This enables the termination of the computational domain 
a short distance downstream of the configuration.,) 

The far field operator is taken to be the Prandti-Gfauert operator, 

which is a linearization of the full potential equation ( 1) about V,X The discrete 
operator T is the standard seven-point finite difference discretization of .F. The 
computational domain must include one plane of unrefined global grid boxes on 
each face of the computational domain, where F= T. These unrefined boxes must 
not be cut by any boundary surface (except boxes on the downstream face of the 
computational domain which can be cut by wakes) and must remain unrefined 
throughout the refinement process. This is require because the source Q is 
assumed to be zero on the boundary points of the global grid. This condition is 
satisfied if F = T for boxes on the faces of the computational domain. 

It is convenient to define three classes of boxes in such a grid. Fa~fi& bo.ues are 
boxes where Fr T. ,411 such boxes are identical except for a scale factor depending 
on their level of refinement. We assume that all boxes on the outer boundary of the 
global grid are far field boxes. Near field boxes are boxes not cut by any boundary 
surface, but where Ff T. Such boxes are by far the most numerous and have identi- 
cal element stiffness matrices up to a factor depending on the refinement level and 
the local values of the coefftcients of 9. Bnundar~~ boxes are those cut by a bound-- 
ary surface. Each such box may contain several ffow regions (see Section 3.4) each 
with its own unique element trial function and associated element stiffness matrix. 
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Due to the nonlinearity of the full potential equation, operators for computing the 
velocity at the centroids of each flow region within a boundary box are also needed. 

3.4. Finite Element Operators 

Element stiffness matrices are generated by taking variations of the functional J 
with respect to each degree of freedom and using the local nature of the element 
basis functions. The density p is replaced by a piecewise constant function. In 
Eq. (8) the pressure p has the property that 

where (u V, W) = V@. Thus, taking a variation of the volume integral in Eq. (8) is 
equivaler to taking a variation of the energy functional 

a(@, @)= -j pVCD.V@dV 
0 

with density fixed. If only natural boundary conditions are present, variations of J 
are given by 

6J= -[ pV@.V&DdV 

Here, pi is the value of p at the centroid of the elemental region Oj. The last step 
in Eq. (18) is equivalent to replacing p by a piecewise constant function [33]. 
Equation (18) defines the element stiffness matrices by considering variations of J 
with respect to each of the eight corner unknowns of the element. Thus, every 
element not cut by a boundary has the same element stiffness matrix up to a 
constant factor that depends only on the refinement level of the element and pi. 
This results in large savings in storage. The multiplying factor pi must be computed 
each iteration. 

The density p is a nonlinear function of the velocity and is evaluated at the 
centroid of each element every iteration. Thus, discrete formulas for velocity at the 
centroids in terms of the unknowns at the corners of the element are needed. Since 
all far and near field box elements are similar, only one velocity formula need be 
stored, resulting in additional large savings in storage. This approximation of the 
operator coefficients maintains second-order accuracy for the potential in the L2 
norm and first-order accuracy in the energy norm [33]. 
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Since boundary conditions on a surface can induce disconiinuities In @ or V@,, 
one element trial function is needed in the boundary boxes for each connected sub- 
set of the box. Such connected subsets are referred to as D regions (see Fig. 3j. 
Each D region is bounded by a subset of the boundary surface as well as possibly 
subsets of the box faces. D regions are not defined in stagnation regions such as the 
interior of wings or bodies. In such regions, the solution is of no interest and ~‘e 
define the operator .F by zF@ s q5 = 0 which corresponds to perturbation stagna- 
tion. One can merely set q3 = 0 at all grid points of boxes completely inside stagna- 
tion regions and finite element discretization is not needed. Thus, a box cut by e 
boundary surface with flow on one side but stagnation cn the other would have 
only one D region corresponding to the flow region. for example, region B, in 
Fig. 3. The element trial function for each such D region is parameterized by unique 
unknowns at the corners of the grid box. Corner unknowns on the other side of a 
boundary surface from their D region can be viewed as extrapolated values and are 
denoted by F It is therefore possible to have more than one element triai function 
in a given box and more than one unknown at a grid point. This is the casr in 
Fig. 3 for D regions D, and D2: where a wake divides an element. The YL unknowns 

FIG. 3. Placement of unknowns. All grid points have @ unknowns 
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correspond to the element trial function in D, and the Y, unknowns correspond 
to the element trial function in D,. This represents only a slight complication since 
each element trial function is still parameterized by eight unique unknowns. There 
is a one-to-one correspondence between element trial functions in the box and D 
regions. Each D region also has its own element stiffness matrix. The density is 
evaluated at the centroid of the D region so that special velocity operators are 
required. These operators give the velocity at the centroid in terms of the eight 
corner unknowns associated with the D region. 

Each D region has its own distinct element stiffness matrix which must be stored. 
However, these elements represent typically only 10 to 20% of the elements needed 
to give an accurate solution of the boundary value problem. Hence, the storage 
required is acceptable. The element stiffness matrices are derived from an expanded 
version of Eq. (18) including appropriate surface integral terms. The domain of 
integration for the volume integral is the region cut off by the relevant boundary 
surfaces, i.e., the D region in question. The domain for the surface integrals is the 
part of the surface inside the D region. The integrand is a product of polynomials, 
which is itself a polynomial. Thus, volume moments must be computed over the D 
region. We will restrict our attention to the volume moment 

Since the boundary is parameterized by piecewise flat panels, this moment can be 
computed exactly via the following procedure. By Gauss’ theorem 

(20) 

where S is the bounding surface and R = (x, y, z). Since S is the union of flat 
surfaces Si, 

H(I, J, K) = 
z+:+KCF’ (21) 

Fs,=@(I+ 1, J, K)+n,F(Z, J+ 1, K)+n,F(I, J, K+ l), (22) 

where 

Each Si is assumed to be polygon whose perimeter is the union of straight lines 
TV. Using Stokes’ theorem, F(I, J, K) for the fixed i may be evaluated recursively 
by the formula 
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F(I, J, K) = 
1 

IfJtK-1 ! 
(M)F,,+~ E,. 

I 
F,l = n,(l- 1) F(Z- 1, J, K) + n,.lJ- I) F(I, J- 1, K) 

+n,(K- 1) F(L J, K- 1) 

EV=v,YE(T+ I, J, K)+tl>.E(I, J-f 1, K)+vzE(I, J, K+ i), 

where with t^ denoting the edge tangent vector, G is the edge normal vector i@~t. 
and E(I,J, Kj is defined by 

Using simple one-dimensional integration formulas E(I, J. K) may be evaluated 
recursively by the formula 

E(I: J, K) = I+J:K-2 E+Drl 

E;= (I- 1) [,E(i- 1, J, K) + (J- 1) i,.E(I, J- I, K) 

+ (K- 1) i,E(I, J, K- 1) 

D,=t,YD(I+l, J> K)+t,D(I, Jt l,K)+.t, 

where 5 = if@ IZ) 0 t^ (constant along T,), and D(I, J, K) = x ;--y y-‘lfT where 

1 and 2 represent the initial and final points of T,. Thus, the original integrals (19) 
defined over a complicated volume can be systematically reduced to point evalua- 
tions at vertices of the bounding surface. The surface moments arising out of the 
surface integrals in Eq. (7) can be computed starting with Eq. (23). Note that the 
location of the centroid in each D region can be computed from the zero and 
first-order moments. 

There remains. of course, the problem of identifying D regions and their bound- 
ing surfaces in a given boundary box. This is done in three stages. First, for each 
panel, we construct a list of grid boxes containing any part of the panel. Because 
the grid is rectangular and hierarchical in nature it is relatively easy to isoiat~e the 
subset of boxes which are located within a neighborhood of a given panel. 
Moreover, because the boxes are rectangular and the panels are divided into flat 
triangles it is straightforward to determine if boxes in a neighborhood, in fact, 
contain any part of the given panel. This list is then inverted to find all the panels 
contained in a given boundary box. In the second stage wc construct a list of 
equivalence classes of panel sides for each boundary box. A panel side is tither the 
upper or lower surface of a panel An equivalence class consists of all panel sides 
which are connected to each other through panel edges. A panel side is connected 
to another panel side if the two panels share a common edge that is parrklly or 
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-wholly contained within the given boundary box and if there is no intervening 
panel also connected to that edge. In the third stage we identify separate connected 
regions of the boundary box. This is done by choosing points on different panel side 
equivalence classes and then joining them with straight lines. The set of panels 
cutting these straight lines is examined and the panel side equivalence classes of 
panels responsible for successive cuts are identified as members of a new 
equivalence class of panel sides which bound a connected region. Polygonal subsets 
of a face of the boundary box are included in such an equivalence class whenever 
a panel side is discovered to intersect the face. This algorithm determines connected 
regions within a boundary box. However, it is also necessary to determine which 
such regions are connected to regions in adjacent boxes. This is because of the 
necessity of maintaining continuity of elemental basis functions across box faces 
and edges. For this purpose we keep track of which panels in each boundary box 
region intersect box faces. These intersections are compared with those in an 
adjacent box and connections between regions are established. The Iv parameters 
at common nodes of connected regions are then identified. 

3.5. Grid Interfaces 

In the finite element method, conservation of mass results if the element basis 
fundtions are continuous. This property can be retained in the presence of grid 
refinement by introducing the notion of pseudo-unknown. A pseudo-unknown is 
defined as an unknown located at a node that is on the boundary of some element 
but is not located at a corner of this element. This can occur only at a coarse-to-fine 
grid interface. In the two-dimensional case pictured in Fig. 4, @, is a pseudo- 
unknown whose parents are Qz and Q3. In the situation pictured in Fig. 3, YpS is 
a pseudo-unknown whose parents are Qp and Yp. In order to maintain continuity 
of the element basis functions across element boundaries, @, in Fig. 4 must be 
$(Q2 + Q3), i.e., the average of its parents. In three dimensions, pseudo-unknowns 
can occur at the midpoints of element edges or the centers of element faces. For a 

FIG. 4. In two dimensions, Q2 and @, are parents of @, 
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pseudo-unknown Q1 at the center of an element face with four parents QZ9 Q3. @, . 
and Q5* 

@, = $(@2 + @j + @J + @j). i?,‘) 

Thus, pseudo-unknowns are not true degrees of freedom. They could be 
eliminated at the beginning from the element stiffness matrices by using Eq. (27). 
This would result in loss of uniformity in these matrices, many special cases, and 
loss of vectorization. Instead these unknowns are treated as degrees of freedom 
when the element stiffness matrices are generated. En the process of evaluating the 
discrete operator F, pseudo-unknowns are first assigned values by averaging their 
parent unknowns. Residuals of the governing equations are produced at these 
unknowns but are then distributed to the residuals for their parents. This technique 
has the advantage that every element stiffness matrix produces contributions onEy 
to the eight corner unknowns of its box element: thereby simphfying the generation 
of the stiffness matrices and enhancing vectorization. Vectorizing over large Mocks 
of similar elements can be done using an outer loop over the eight corner 
unknowns and an inner loop over the elements in the block. This process of 
distributing residuals to parents is justified by Eq. (27) and a straightforward 
application of the chain rule 

Thus, the residual of the discrete version of Eq. ( IS) calculated at @, s 
equally distributed to the residuals for the four parent unknowns. 

3.6. kiotlifications to the Bateman Principle 

The introduction of the last surface integral in the variational principle (7) 
enforces a Dirichlet condition on 29,. Equation (7) can then be used to calculate 
the element stiffness matrices in a finite element formulation. It turns out that the 
resultant discrete problem is somewhat unstable. In certain instances one can shoib 
that the boundary Y unknowns actually satisfy a discrete Helmholtz equation and 
an oscillatory solution is, in fact, obtained. This phenomenon is probably related to 
the fact that J is no longer maximized in subsonic flow with Dirichlet data. This 
suggests a remedy which we have implemented and has been found to be very 
reliable numerically. The last integral in (7 ) is replaced by 

where Al is the minimum diameter of the box containing the basis function. 
.4 similar term may be added to the second integral. 

-411 surfaces are represented by piecewise flat panels. Resultant discontinuities in 
slope from panel to panel will be reflected in the solution as the grid is refined. In 
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most cases, this effect is spurious, since the surface slope discontinuities are artifacts 
of the panel description of the surface. To eliminate this problem, we simulate a 
curved surface by adding to the variation of Eq. (7) a surface integral 

6J=6J+j (pV@.ri-ri*)@dS, (30) 
am 

where ti* is a polynomial interpolation of h and 840 denotes the variation of @. The 
endpoints for the polynomial interpolation of the normal are user controlled. This 
allows discontinuities in slope where they are actually present in the underlying 
geometry. 

3.7. Dissipation 

In the full potential case, standard first-order upwinding of the density is used to 
produce the artificial viscosity required when supersonic flow is present [7, 341. 
Such an upwinding is given by replacing p in the full potential equation with 

p=p-pli.v_p, (31) 

where ti is the normalized local velocity and V-p is an upwind undivided 
difference. In Eq. (31), ,u is the switching function given by 

p = max(O, 1 - Mf/M’), (32) 

where M is the local Mach number and M, is the cutoff Mach number assigned 
the value Mf = 0.95 chosen to introduce dissipation just below Mach 1.0. We 
upwind on a face basis with a stencil that is precomputed. Every element has six 
faces. For each face a density is chosen for upwinding in the operator generation 
phase of the algorithm. For a uniform grid with no boundaries, each box has a 
single box adjacent to it across each of its six faces. In case of grid refinement, there 
are two other cases. If the adjacent box is refined, the density used for upwinding 
is obtained by averaging the densities for the four adjacent refined elements. If the 
adjacent box is coarser, then three densities are averaged. In two dimensions, the 
possibilities for upwinding to the left across an edge are illustrated in Fig. 5. 

We define the upwinded density p by 

p=p+p : max(-li. ni3 O) s(i) C ci,j(Pi,j--P), (33) 
i=l i 

where i runs over the six faces of the given box, j runs over the densities averaged 
to obtain the density upwinded to, Ci.j is the coefficient for each of the four 
densities contributing to the density upwinded to, fl is the normalized velocity at 
the centroid of the given element, ni is the outward pointing normal to face i of the 
element, and s(i) is a blending function td make the upwinding differentiable. This 
upwinding is first-order accurate, introducing an error comparable to replacing the 
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Face Adjacent Box at Same Lever 

Face Adjacent Box is Less Refined 

Face Adjacent Box is Less Refined Face Adjacent Box is Refined 

FIG. 5. Upwinding stencils in two dimensions for negative A: edge. 

density p with a piecewise constant approximation in each element. In the case of 
regions, special operators must be constructed based on local information about 

box adjacency. We will not discuss this aspect of the method in detail except to say 
that all the information needed is extracted from the octtree and D region informa- 
tion in a preprocessing step. 

3.8. Accuracy of the Discretization 

At first glance, one might think that this discretization would suffer from 
approximation problems, since high aspect ratio D regions are often present. By 
keeping the trial functions parameterized by values at the corners of similar boxes, 
uniformity of the basis [33] iS guaranteed. Thus, in the limit, standard approxima- 
tion theory and finite element error estimates hold. Another issue for the discretiza- 
tion described here is conditioning. We have no rheoretical guarantee of good 
conditioning as the mesh is refined. However, in practice, conditioning problems 
have been encountered only when very small D regions are present (six or seven 
orders of magnitude smaller than neighboring grid celfs). 
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The asymptotic convergence of the method has been verified with uniform grids 
for the case of a sphere in incompressible flow where an analytic solution is 
available [20]. Sections 7 and 9 contain computational examples that demonstrate 
the method’s accuracy for locally refined grids. 

4. OCTTREE DATA STRUCTURE 

We have developed a compact data structure which contains essentially all the 
information regarding the refined grid. Asymptotically this data structure requires 
storage equal to y the number of unrefined boxes for the box information. 
However, the factor is closer to 2 in practice because node information must also 
be stored. The data structure allows efficient extraction of a variety of information, 
such as the location of nodes and element centroids, box size, box level, node 
indices, box adjacency, and identity of boundary boxes. 

We use a modification of an octtree-type data structure described by Samet [32]. 
At the beginning of the octtree data structure certain overhead information that 
describes the size of the grid is stored. This is followed by two blocks of data, each 
as long as the size of the global grid, describing its refinement. Then we follow the 
branch data elements of the tree. These describe the hierarchical refinement and 
form the bulk of the octtree. 

A typical branch data element in an octtree is illustrated in Fig. 6. The first word 
in a branch data element points to the father box, the next eight words point to the 
refinement branches of the sons if any, and the last word contains an accumulation 
index specifying the number of nodes encountered up to that point in the octtree. 

A null pointer (value zero) in the son entry in any branch data element 
represents an unrefined box. Any unrefined box cut by a boundary is identified by 
a negative number (equal to its index in a list of such boxes) placed in the son entry 
in a branch data element. This is a convenient and compact way of accounting for 
the presence of the boundary. 

We have extended the octtree data structure further to accommodate nodal 
information. Nodes are indexed by assigning the index of a box to the node at its 

Pointer Pointers to Son 
to Father Refinements 

Accumulation 
Index 

ti 

// 3rd Son’s Refinement 

FIG. 6. Octtree data structure element. 
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Pseudo 
R.eSnement 

FIG. 7. Some details of the hierarchical refinement. 

lower-left-near corner, In order to account for all nodes at refinement interfaces we 
perform pseudo refinement (see Fig. 7). This allows us to keep track of the nodes 
as well as the boxes using the same octtree with only a modest increase in storage. 

oxes added by the pseudo refinement are used only to identify nodes and are not 
finite elements. 

Even though the octtree data structure described above is able to reflect an 
arbitrary collection of hierarchically refined grid cells, it is convenient to restrict the 
refinement pattern. We require that no two face or edge neighbors in a “‘legal” 
relined grid differ by more than one level (see Fig. 8). This rule prevents ~at~~l~g~” 
tally large stencils under certain circumstances, but allows refinement down to an. 
arbitrary level within one adjacent coarse grid box. 

The location of a node or a centroid of an unrefined box can be calculated by 
climbing up to the ancestor in the global grid and then using the global box 
information. Adjacency or box-to-box connectivity information can be obtained by 
starting at a box and climbing up the octtree to the root of the branch that includes 
that box and climbing down a complementary path to the neighboring box. 

I&gal Refinement 

Legal Refinement 

FIG. 8. Legal and illegal refinements. 
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5. LINEAR SOLUTION ALGORITHM 

The solution technique we use was designed for nonlinear problems. However, it 
is useful to first describe the algorithm in the special case of a linear boundary value 
problem, e.g., the Prandtl-Glauert equation in aerodynamics. We will consider the 
generic linear potential equation 

V.(pV@)=f 

with p = p(x, y, z) assumed to be given and strictly positive. Boundary conditions 
are those described earlier in Section 2 for the full potential equation. The finite 
element operator described in Section 2 will be denoted by L,. It is defined over the 
whole grid except on the boundary of the global grid and is evaluated in the 
standard way by multiplying each element stiffness matrix by the current vector of 
unknown values. T is the constant coefficient discrete Poisson operator on the 
global grid. In order to enforce the far field condition (3), source unknowns Q are 
introduced on the global grid and are defined by T@ = Q as discussed in Section 3. 
Except in the vicinity of wakes, we assume that L = Ton the boundary and exterior 
of the computational domain so that nonzero sources Q are confined to the interior 
of the global grid. At global grid points, we replace the unknown CD by Q. Since Q 
is known to be zero on the boundary of the global grid, the residual does not need 
to be computed there. Since L is defined in terms of 0, it is necessary to be able 
to compute @ when Q is given, i.e., to compute T-IQ. The result of applying T-.' 
in the present implementation of the method always satisfies the discrete version of 
the far field condition (3). This is true because T-' is evaluated by convolution 
with a discrete Green’s function G which itself satisfies this discrete far field condi- 
tion [20]. Thus, on the global grid, CD = T-'Q = G * Q. In the following, we will 
denote the extrapolated values in boundary boxes by Y and all other variables on 
the refined grid by @. The doublet parameters on wakes are denoted by p. We thus 
want to solve the linear system of equations 

(35) 

An iterative procedure is chosen for this purpose. Since the system (depending on 
boundary conditions) is non-symmetric and non-definite we chose the GMRES 
method of Saad and Schultz [24] as the basic iterative solver. An iterative method 
was required because the problem is generally too large to be solved by any direct 
method and because of the nature of the far field condition. The discrete far field 
condition is not sparse and would be very complicated to discretize in matrix form. 

The T -’ operator already acts as an -effective right preconditioner for the global 
grid points. In addition, we have found it necessary to use a left preconditioner. 
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chosen to approximate the problem near the internal boundaries. For this purpose, 
we define the reduced set to consist of all unknowns that are located at corners of 
boundary boxes, refined boxes, or boxes with total pressure or temperature 
different from freestream values. The doublet parameters p are also included but 
stagnation unknowns are not. Closure unknowns are those unknowns outside rhe 
reduced set but in the stiffness matrix stencil of some unknown in the reduced set. 
The preconditioner N is taken to be the global stiffness matrix restricted to the 
reduced set. Special boundary conditions are applied at closure unknowns to close 
the system. We have found that it is quite feasible to do a direct sparse incompkete 
factorization of N. This works for the following reasons. First, the reduced set is 
often significantly smaller than the total number of egrees of freedom in the 
problem. Second, a drop tolerance can be introduced into the sparse elimination 
process allowing small elements in the decomposition to be dropped as they are 
generated. This has a cascading effect and dramatically reduces fill [263. Third, a 
grid-based nested disssection ordering can be generated for this reduced se:. This 
ordering reduces fill during elimination and reduces the rotai amount of work. Zr. 
the full potential case, the drop tolerance is the most effective strategy. Large 
regions of refined grid restrict the effectiveness of the first and third factors, Figure 9 
shows the reduced set and a possible first dissector for a grid for a sphere case. 

The boundary condition at closure unknowns is an approximation to the far Geld 
condition for the original problem, i.e., 4 = 0. Note tbat there is some overlap 
between the Q unknowns on the global grid preconditioned by Ti”-’ and those in 
the reduced set preconditioned by N- r. For these unknown sources Q at global 
grid points in the reduced set, an additional preconditioner 7’ must be applied on 
the left to make the equation dimensionally correct. 

FIG. 9. Reduced set and possible first dissector 
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There are then a total of five classes of unknowns in a given transonic flow 
problem. They are: Q (I), the source unknowns at global grid points which are not 
in the reduced set and not in stagnation regions; Q”), the source unknowns at 
global grid points in the reduced set or in stagnation regions; @, the values of the 
velocity potential at points on locally refined grids; !P, the values of velocity poten- 
tial in the boundary basis functions; and finally, p, the doublet strengths at leading 
edges of wake networks. 

The preconditioned equation at reduced set unknowns can then be written as 

TN-'(f - LT-%) = 0, (36) 

where Q (1) C’) xtr= p- i/ iu @ ’ Y P 
The operators T and N are defined as 

(37) 

(38) 

I 0 0 0 0 

' N(2)C2) N(2N3b NC2,C4, Nt2,W 

N= o NC3,(2) NC,,,,, N(3)(4) Nt3,w (39) 
O Nt4)(2) Nc4h3~ Nc4~i4) N~4~w 

O Nt5)t2) N(j)t3) NC5)i4) NC5)(5, 
To achieve invariance with respect to units, some scaling of the source unknowns 

Q relative to the field unknowns is done. Note that from dimensional analysis 
alone, a source differs from a field quantity by a factor of the inverse length 
squared. Source scale factors are defined so that the GMRES convergence history 
is independent of the physical units used to define the problem. 

The calculation of the preconditioned residual R (the function evaluation sub- 
routine for GMRES) can be described as follows. For unknowns Q(” on the global 
grid but not in the interior of the reduced set, 
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R(Q”‘) =f- L (40) 

For unknowns Qi” on the global grid and in the interior of the reduced set or 
located at global grid points in stagnation regions. 

R(Q(‘))= TN-’ 

In (41), special account must be taken of unknowns Q located in stagnation 
regions, such as the interior of wings and fuselages. For these unknowns, it is 
important to reahze that N-’ is just the identity, .f = 0, and L@ = qb. Thus T is 
applied to the global grid unknowns in the reduced set, closure point unknowns, 
and stagnation unknowns. But the input for Tat stagnation unknowns comes from 
a different process than that used for the other two classes of Q unknowns. Another 
special class of Q unknowns in (41) are those at closure points. N-r does apply to 
the residual at these points producing input values for T to give residual values for 
points in the reduced set. But for these closure unknowns, the residual equation is 
actually (40). 

For unknowns @ not located on the global grid and for ail unknowns !P and p% 

For @ unknowns located at points not in the globaf grid but in stagnation regions, 
Eq. (42) must be modified. The residual is given by R(Q) = E@ = 4. 

The convergence rate of this method depends on the drop tolerance used in the 
sparse solver. When the reduced set is essentially two-dimensional, nested dissection 
will be particularly effective and no drop tolerance is needed. In this case, the 
method typically converges in 10 to 20 iterations. (Here converged means that the 
residual has been reduced by 10 orders of magnitude from the initial residual. j This 
shows that the reduced set problem is in general an excellent preconditioner. Intro- 
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ducing a drop tolerance sufficient to reduce fill and work by an order of magnitude 
typically causes the number of iterations required for convergence to at most 
double. 

6. SPARSE SOLVER 

In this section, the general purpose sparse solver that is used to factor the 
preconditioner N mentioned above is summarized. The sparse solver was designed 
for general usage to solve very large problems. It has a general input capability 
allowing contributions to matrix elements to be entered in any order. These 
contributions are sorted and combined to produce the final matrix. This feature is 
particularly convenient with finite elements, where element stiffness matrices can be 
generated in any order. The solver is out-of-core so that quite large problems can 
be solved on current computers. Gaussian elimination is performed by block rows, 
additional blocks being created as fill is generated. The blocks are stored on a 
random file. If the blocks reside on a CRAY SSD, for example, the block transfers 
can be made almost as fast as transfers from main memory. A drop tolerance can 
be used to drop small elements in the L and U factors as they are generated. Each 
element in the decomposition is compared to the magnitude of the diagonal entry 
of the current row and dropped when this ratio is smaller than the tolerance. For 
a great many full potential cases, we find that good preconditioning is obtained 
even if the total size of the incomplete L and U factors is only twice the number 
of nonzeros in the original matrix [26]. In all cases we have considered, physically 
based nested dissection ordering is feasible. This ordering is often quite valuable in 
reducing the cost of the decomposition. We will describe in detail only two features 
of this solver in the context of its use as a preconditioner in a finite element method. 
Other features are detailed in [26]. 

6.1. Sorting 

Contributions to the global stiffness matrix are generated on an element by 
element basis, i.e., element stiffness matrices are input one by one. This order is 
unrelated to the ordering of the unknowns used for the decomposition. Thus, the 
contributions must be sorted and coalesced to produce the final global stiffness 
matrix. This process consists of four steps and is illustrated in the case of two 
blocks and a 3 by 3 matrix in Fig. 10. Each contribution is described by a numerical 
value (denoted by a letter) and by row and column indices. The four steps are as 
foilows : 

1. All contributions are collected in equal sized blocks and stored out of core. 
2. Each block is returned to main memory and sorted by row index, resulting 

in an ordered sequence of row groups within each block. A row group is a group 
of contributions all having the same row index. A simple bucket sort algorithm 
[35] seems to be the most efficient for this purpose. 
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Contributions input in two bloc& 

a b d f g 
1.2 1.3 “1.1 3.1 ;,I 1.1 3x2 

Sort each block into row groups 

hle:ge two Slacks into a chain of blocks 

Coalesces all contributions to the same matrix elemer;t 

FIG. 10. Sorting and merging procedure. 

3. These sorted blocks are then merged into ordered chains of blocks. 4n 
chain is a chain of blocks such that all contributions in a given block have 

ices iess than or equal to those in all subsequent contributions in that block 
and the remaining blocks of the chain. Merging two chains consists in interlea+g 
their row groups so that the resulting chain is also sorted by row index. PI% a given 
stage, the two shortest chains are always merged. Ultimately, the result is a ~ingke 
chain of blocks. Because the contributions are not sorted by column index at this 
stage, alI movement of elements can be done by row group. This allows vectoriza- 
tion of the merge algorithm. 

4. .411 contributions to the same matrix element are t en coalesced, i.e.. within 
each row group, contributions with common cciumn indices are added to form a 
single contribution. Coalescing can be done without first sorting each row group by 
column index. 

We note here that most elements of the global stiffness matrix have contributions 
from eight element stiffness matrices in subsonic regions and as many as GS in 
supersonic regions. Thus, the number of contributions m2y be up to 125 times 
greater than the number of elements in the assembled global stiffness matrix. In 
order to minimize storage requirements, the above four-step process is performed 
repeatedly. (It can be performed at any point in the generation of contributiol1.s tc 
the stiffness matrix.) When this is done, chains which have already been formed are 
not merged until new chains of equal size exist. Row groups are sorted by column 
index using a bucket sort only after completion of contriburion mpu: and 
coalescing. 
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6.2. Physically Based Nested Dissection Ordering 

For large problems, a sparse matrix preconditioner is practical only if the decom- 
position is also sparse. This is true not only because of storage limitations, but also 
because of the CPU time required for forward and back substitution. One key to 
maintaining sparsity is a good permutation ordering for the rows and columns of 
the matrix. For sparse matrices resulting from standard discretizations of elliptic 
partial differential equations on uniform rectangular grids, nested dissection has 
been shown to be asymptotically optimal [36]. 

In the current implementation, local grid refinement leads naturally to an order- 
ing of the unknowns that is not very favorable for sparse factorization. This defect 
has been remedied by implementing a physically based version of nested dissection 
suitable for grids with local refinements. One advantage of this method is that it 
does not require an examination of the graph of the matrix. The algorithm acts 
recursively on subsets of nodes (grid points). The first such subset is the set of all 
nodes in the reduced set. For a set of nodes A” the algorithm finds a set of nodes 
A; called a dissector, We write ,+* = A’iu J,t/,u ,-,b;, where -,I+; consists of nodes on 
one side of ,ti, and -+; those on the other. The dissector has the property that an 
unknown at any node on one side has a stencil that does not include unknowns 
located at nodes on the other side. The permutation is produced by ordering the 
nodes in the dissector last. Figure 11 shows the block structure of this matrix. The 

Dissector 1 
1 

0 

0 

0 

0 

0 

Dissector 2 

0 

Dissector 3 

E‘IG. 11. Block structure of a sparse matrix ordered with nested dissection. 
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FIG. 12. Examples of cutting planes and nodes in resultin g dissector: -~ -. cll:ting plaze: x , node in 
J:: I-. , . , node in dissector _ 1 i,; ii. node in 1;. 

blocks of zeros remain intact, preserving sparsity during the decomposition,, For a 
structured grid a plane of points forms a suitable dissector for a U-point stencil. 

Dissectors are generated by first taking a cutting plane perpendicular to a coor-~ 
dinate axis and finding the set d of all boxes intersecting this plane by interrogating 
the octtree data structure. Taking the case when the cutting plane is perpendicular 
to the I axis, the dissector is taken to consist of all nodes on the left hand {negative 
.x) face of boxes in B that are also in I 1,‘“. This will provide a dissector except near 
pseudo-nodes where the stencil is altered. When a pseudo-node is in the dissector 
its parent nodes must also be included in the dissector. ‘Figure 12 shows examples 
(in two dimensions) of cutting planes and corresponding sets of nodes in the 
dissectors. 

There are two guiding principles that aid in producing an effective nested 
dissection ordering. The first is that the components %,!i and -.I,; resulting from t5e 
dissection be of approximately equal size. The second is that the dissectors contain 
as few unknowns as possible. (The size of the dissectors can vary due to local 
refinement and the location of boundaries.) These principles can conflict and some 
compromise is necessary. The cutting plane is selected to have x coordinate equal 
to that of the node in ..I with median x coordinate. Dissectors perpendicurae CC 
each of the three coordinate axes are tested and the one yielding the smallest 
dissector is chosen. The process is repeated recursively on the newly formed com- 
ponents resulting from each dissection until all remaining components contain 
fewer than 50 nodes. 

The above algorithm is modified when regions of supersonic flow are presen, in 
the fuBi potential case because upwinding of the density enlarges the stencil [see 
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Section 3). If the cutting plane intersects a box which contains supersonic flow 
or is adjacent to such a box then all the nodes of the box are included in the 
dissector. 

7. COMPUTATIONAL RESULTS FOR LINEAR FLOW 

We have implemented this method in a computer program called TRANAIR. 
This program was written for the CRAY X-MP computer but has also been run on 
a CRAY Y-MP and on a large central memory machine, namely, the CRAY 2. 
Detailed comparisons of TRANAIR results with those of a linear panel code [S] 
used extensively at Boeing have been made. Linear flow is modeled using the 
Prandtl-Glauert equation (1.5). In this section, we discuss solutions for three 
geometries: a sphere, the ONERA M6 wing, and the F16 tighter aircraft conligu- 
ration. 

The first case presented is a sphere with radius 0.8 in linear potential flow with 
M, = 0. This is a nontrivial problem for a Cartesian grid method since the surface 
intersects the grid in many different ways depending on the location on the sphere. 
Four grids were used to test the accuracy of TRANAIR. In Fig. 13 the paneling 
used for the coarse and medium grids is shown. With the fine and uniform grids, 

FIG. 13. Paneling used for sphere in linear flow, 1600 panels. 
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the paneling was doubled in each direction, resulting in 6400 panels. Planar cuts 
through the four grids are shown Fig. 14. The uniform grid had 123,680 elements, 
Its far field boundary was somewhat closer to the sphere. The coarse, medium, and 
fine grids had 10,356, 35,456, and 149,515 elements, respectively. These cases were 
tun with one plane of symmetry. Only half of each cut is shown since each cut is 
symmetric about a second place of symmetry. Stagnation regions (those totally 
inside the sphere) are eliminated in a preprocessing step and are not included in tk 
element totals. 

Uniform Grid 

Medium Grid 

Coarse Grid 

Fine Grid 

FIG. 14. Cuts through four grids for a sphere in lineer tlcw. A, =5. 
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FIG. 15. Solutions on four grids for a sphere in linear flow, M, =O. (a) Uniform grid; (b) coarse 
grid; (c) medium grid; (d) fine grid; ---, analytic solution; 0, TRANAIR. 
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I I I I’i’i’i’i i’i’i 1 I’i’i’i’i’i i ’ i 

Coarse Grid 

Fine Grid 

FIG. 16. Cuts through two grids for the ONERA M6 wing in linear flow, M, = 0, CI = 3.06’. 

In aerodynamics, pressure is generally represented by its non-dimensional 
counterpart defined as 

(43) 
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where p is local pressure, p %, pm, and q JL are the freesrream density, local pressure, 
and velocity magnitude. In Fig. 15 the surface pressure for the sphere is plotted as 
a function of x. In aI1 cases presented in this paper, the solution is displayed at 
panel corner points. Velocities and hence pressures are computed by simply 
evaluating the gradient of the basis functions at these points, If the panels are smail 
compared to the local grid cell size, Le., there are many panel corner psints in a 
single grid cell, plotted C, results will show a stairstep effect. This is due to the fact 
that the gradient of the basis function is almost constant in each ceil. To eliminate 
this effect, standard finite element post processing algorithms, see, for example, 
[37, 381 are available to smooth the velocities. One such algorithm has been 
recently ‘implemented but was not used for the results shown in this paper. The 
results generated with post processing are not significantly different in most cases. 
Sowever: for the sphere cases, post processing improves the symmetry of the resuk 

FIG. 17. Waterline cut through ONERA M6 coarse grid. 
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FIG. 18. Solutions for the ONEAR M6 wing in linear flow at 33% span, M, = 0. c1= X36’; (a) Erie 
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(a sensitive test of accuracy). This post processing can be summarized briefly as 
follows. Velocities at nodes are obtained by averaging basis function velocities from 
surrounding elements. Velocities at any point are then obtained by trilinear inter- 
polation using the nodal values. This results in continuous velocities and hence 
continuous surface pressure distributions. 

In Fig. 15, data at all circumferential stations (panel corner points) are plotted. 
For the 1600 panel case, there are 20 stations at each x value. The scatter of surface 



a 

c 
P 

0.0 0.2 0.4 0.6 0.8 1.0 

xoc 

z OZ 

-1.2 ~ 

C 

C 
P 

0.8 // 

0.0 0.2 0.4 0.6 0.8 1 .o xoc 

FIG. 19. Solutions for the ONERA M.6 wing in linear flow at 60% span, 44, = 0, c( = 3.06”; (a) 60% 
span, tine grid; (b) 60% span, coarse grid; (c) 80% span, tine grid; (d) 80% span, coarse grid; -, 
panel method; 0, TRANAIR fine grid; x , TRANAIR coarse grid. 

36 



C 
P 

0.6 

0.8 i, __?___r---_1_-v- 
0.0 0.2 0.4 0.E 0.8 1.0 

xoc 

z 

d 

-1 A 

c 
P 

o.ao+-- I_- 
0.4 0:6 0.8 Ti-- 

xoc 

FIG. 19-Continued 

37 



38 YOUNG ET AI.. 

pressure at a constant x coordinate is due to the Cartesian nature of the grid and 
gives a good measure of the overall accuracy of the TRANAIR solution. For this 
problem, an analytic solution is available. The solution accuracy improves 
significantly as the grid is relined. The expected quadratic convergence rate in 
potential as the grid is refined has been verified in this case using an earlier uniform 
grid version of TRANAIR [20]. 

A second case is an ONERA M6 wing with about 1800 panels. The flow condi- 
tions are M, = 0 and angle of attack CI = 3.06’. The panels have a very high aspect 
ratio, being much longer spanwise than chordwise (pictured in Fig. 18). This 
paneling is adequate for a panel method because the solution also changes much 
more rapidly chordwise than spanwise. The number of panels needed to describe 
the variation of the surface unknowns (sources and doublets) in a panel method is 
relatively small, making this a favorable case for the panel method. TRANAIR was 
run on a coarse and a line grid, the coarse grid having 35,188 elements and the fine 
grid having 249,305 elements. Vertical cuts through the two grids at the plane of 
symmetry are shown in Fig. 16. Figure 17 shows a waterline cut through the coarser 
of these two grids. The clustering of line grid cells at the leading and trailing edges 
is necessary to resolve high velocity gradients even for linear flow about a simple 
wing. Figure 18 compares surface pressure at the 20% span station. The solid line 
is a solution obtained with the panel method. Note that the fine grid TRANAIR 
solution agrees well with the panel method solution. The leading edge is enlarged 
in the third plot. Figure 19 shows two other stations from these same solutions. 

An F16 fighter aircraft configuration shown in Fig. 20 was analyzed in both 
codes. The flow conditions are L& = 0.6 and CI = 4.0”. The conliguration has 3510 
panels, making it quite expensive for panel methods. The TRANAIR run had 
162,850 elements. Figure 21 compares surface pressure on the wing at two stations. 

FIG. 20. F16 Aircraft configuration. 
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It is worth noting that the F16 with tanks and missiles that we discuss later in the 
Section 9 has 7143 panels, making it too big to run in the panel method. This case, 
however, runs quite easily in TRANAIR at moderate cost. 

8. NONLINEAR SOLUTION ALGORITHM 

When the problem is nonlinear, a damped Newton’s method is used. Each itera- 
tion requires the solution of a linear problem of the type discussed in Section 5. 
This is accomplished using the preconditioned GMRES algorithm [24,25]. 

Newton’s method can be described as follows. Suppose we wish to solve the 
nonlinear system of equations 

F(x) = 0. (44) 

Given an initial approximate solution x0, for n = 0, 1,2, . . . until the residual is 
sufficiently small, set 

x:iz+l= XN + A( 6x” + ’ ), (45) 

where 8x”+ I is the solution of the linear system 

Fx:,,(6x” + ‘) = -F(xy (46) 

and ,? is a step length to be determined. Here FX n is the Jacobian for F linearized 
about x”. This linear operator can be defined by giving its action on any vector y, 

FX( J,) = lim 
F(x + EJ’)- F(x) 

(47) E'O & 

The step length ;1 is selected so that in some appropriate norm, ]\F(x,~+ ,)/I < 
/lF(~“)ll. The GMRES algorithm can be used to solve Eq. (46). This algorithm 
requires only the ability to calculate the action of the linear operator TX on any 
vector JJ. Equation (47) can be used to approximate this action 

where E is small in some appropriate sense. Thus, the linear problem, Eq. (46), can 
be solved without ever explicitly generating the Jacobian for the full nonlinear 
problem. 

To control the cost of the method, the system (46) is solved only approximately 
with GMRES, i.e., axnfl satisfies 

IIF.p(Sx” + ’ )+F(x”)ll <‘I. 
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This makes the method an inexact Newton method [39]. If q is constant. the 
method converges linearly. If q goes to 0 as convergence takes place, the 
convergence is superlinear. More details can be found in [25]. 

Because problems of practical interest are large and not well conditioned, a pre- 
conditioned GMRES algorithm is needed to solve Eq. (46) effectively. For the full 
potential equation, where F is now the nonlinear discrete full potential 
described previously in Section 3, the preconditioning is identical to that 
linear systems and given in Eq. (36). If f is replaced by -F(P), L by F.YFs’!, and 
T-i% by X, Eq. (36) is the same as Eq. (46) preconditioned on the left by TLVm I. 
For convenience, the finite difference formula (48) is applied to ZV”P; rather t 
F, The matrix forms of T, N, and Tp’ are given in Section 5. N is the Jacobian tor 
i; about the current solution restricted to a reduced set as described in Section 5 
above. The definition of the reduced set is also modified to include al! elements 
where upwinding is used. The matrix N need not be computed every Newton step. 
an old one often being a sufficiently good preconditioner. The convergence rate for 
these linearized problems is the same as that discussed in Section 5. 

The Jacobian N is generated on an element by element basis using the element 
stiffness matrices and the density function p and its derivatives evaluated at element 
centroids. For unknowns one of whose eight contributing elements has unwinding 
in effect, the row of the Jacobian depends on more than just these eight elements. 
The algorithm can be simplified by applying the chain rule fo the calculation of a 
Jacobian entry, 

where b is given by Eq. (31). The first term on the right is the contribution from 
the subsonic stencil, i.e., the element stiffness matrices. The second term is generated 
using a sparse matrix-matrix multiply. This technique enables vectorization even 
though the upwinding is element dependent. 

Newton’s method is rarely globally convergent. Also, its convergence rate is 
generally quadratic only sufliciently close to the solution. In the full potential case, 
the initial iterate is taken to be C# = 0, which usually is not a good approximation 
to the solution. Thus, it is not surprising that Newton’s method works well only for 
small problems or those without shocks. Damping of Newton’s must be introduced 
for large transonic problems to prevent divergence or very slow convergence. This 
is accomplished in several ways. 

We use a damping strategy based on the residual for Eq. (44) due to 
Rose [40] for determining the step length ;1. This strategy was chosen because of 
its simplicity and ease of implementation. 

Another damping strategy that has proved useful in some cases is to further limit 
i so that the solution iterate .P + ’ does not have local Mach numbers greater that 
some prescribed cutoff value. This prevents spurious large velocities from causing 
stagnation of convergence. In the ONERA M6 wing results reported below, this 
strategy was used with a local Mach number cutoff of ./‘3. 
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FIG. 22. Iterates for Newton’s method with residual and local math number damping for 
ONERA M6 wing case, kf, = 0.84, u= 3.06”, 91% span station; -, converged solution; - - -, 
sixth Newton iterate; x , twelfth Newton iterate. 

However, local damping procedures of this kind are only adequate by themselves 
in cases that almost converge anyway. In difficult transonic cases, convergence of 
Newton’s method can stagnate due to the formation of a steep shock in the wrong 
location early in the iterative process. Once this occurs, a local method can rarely 
move the shock more than one grid point per iteration, resulting in very slow 
convergence. 

To improve convergence, a problem-dependent dissipation parameter is intro- 
duced. This parameter is used in a continuation process called viscosity damping. 
Initially, the problem is modified by multiplying the switching function of Eq. (32) 
by a moderate constant (1.5 to 3.0) and by reducing the cutoff Mach number. This 
has the effect of increasing the amount of artificial viscosity and applying it to a 
larger part of the flow field. After several Newton steps, the problem is modified by 
reducing the multiplying factor and raising the cutoff Mach number. This process 
is repeated until the desired level of dissipation is reached. The continuation 
parameter is reduced in discrete steps, two to four usually being sufficient. This 
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FIG. 23. Partially converged iterate for the second continuarion step using viscosity damping for 
ONERA M6 wing case, M Ti =0.84. u = 3.06’, 9146 span station: -. converged solution: - --, 
sixth Newton iterate; 0. seventh viscous damping iterate. 

continuation process has been found to work very well. It has the effect of locating 
supersonic zones and shock positions fairly early in the process, even though the 
shocks are quite smeared. The effect of viscosity damping can be seen in the case 
of the ONERA M6 wing at M, = 0.84 and angle of attack u = 3.06” on a grid having 
about 311,000 elements. This is a case discussed in Section 9 and has a strong shock 
outboard. If Newton’s method is used with an initial iterate 4 =0 and the two 
damping strategies discussed above for limiting A, the convergence is very slow. 
Figure 22 shows the Newton iterate after 6 and 12 Newton steps. The final 
converged solution is shown for reference. Newton’s method is moving the shock 
toward the correct location very slowly. When viscosity damping is used, convergence 
is rapid after the initial viscous problems are partially solved. A partially converged 
solution at the second continuation step (Newton step 7) is shown in Fig. 23. 
Figure 24 shows the convergence histories for both runs. Each Newton step 
required 30 to 50 linear GMRES iterations. The residual jumps in this figure 
correspond to discrete changes in the continuation parameter. The drawback of this 
continuation approach is the high cost of even partially solving the viscous 
problems that are introduced. 
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FIG. 24. Convergence histories for Newton’s method with various damping strategies for 
ONERA M6 wing case, M, =0.84, LX= 3.06”; x, residual and local Mach number damping; 0. 
residual. local Mach number, and viscosity damping. 

Grid sequencing has a big payoff and reduces the need for damping of Newton’s 
method. Grid sequencing consists of solving the problem first on a coarse grid, 
interpolating this solution to a finer grid, and using the interpolant as the initial 
guess to solve the finer grid problem. This technique will be discussed in detail 
elsewhere. 

9. COMPUTATIONAL RESULTS FOR NONLINEAR FLOW 

To demonstrate the nonlinear capabilities of the method, we present solutions for 
a wide variety of three-dimensional configurations. These include complex fighter 
and transport configurations as well as the geometries used in Section 7 above for 
linear flow. 

The first case is a sphere with radius 0.8 at a freestream Mach number of 0.7 
(M, = 0.7). At this condition, the flow is transonic and contains a strong shock. 
This case was used to test the effectiveness of the upwinding used in TRANAIR. 
Ideally, the solution should be axially symmetric. The coarse and medium grids 
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pictured in Fig, 25 were used. They correspond to two of the grids used for linear 
flow about this object. Figure 26 shows surface Mach numbers for both grids as a 
function of .Y. Once again, values at all circumferential stations are plotted. T>e 
quality and symmetry of the solution are noticeably better on the medium grid. The 
medium grid also captures the well-known re-expansion phenomenon at the foot of 
the shock. 

A standard aerodynamic test case is the flow about the ONERA M6 wing at 
44, = 0.84 and x = 3.06’. This case has an oblique supersonic to supersonic shock 

i 

Coarse Grid 

Medium Grid 

FE. 15. Cuts through two grids for a sphere in transonic flow, Al, = 0.7. 
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as well as a supersonic to subsonic shock. Here, TRANAIR results are compared 
to those obtained using the FL028 code of Jameson [63 and a grid with 36~~~~~ 
points. FL028 is a full potential code widely used throughout the aerospace 
industry that is well suited to simple wing geometries. The TRANAIR grid had 
about 311,800 elements. Dense grids were used in both codes to accurately capture 
the oblique shock. In Fig. 27 two vertical cuts through the TRANAIR grid for this 
case are shown. Figure 28 is a waterline cut through the grid, and Fig. 29 compares 

90% Span 

Plane of Symmetry (Root) 

FIG. 27. Two cuts through grid for ONERA M6 wing, M, = 9.81. c1= 3.06’. 
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surface pressures at four stations with those obtained with FL028. The TRANAIR 
solution agrees quite well with the FL028 solution using first-order dissipation. It 
is unclear in this case whether the second-order dissipation FL028 solution offers 
improved accuracy. In this problem, TRANAIR obtained comparable accuracy at 
comparable cost. Viscosity damping is required in this case (see Section 8) and 
accounts for about $ of the TRANAIR iteration steps. 

The F16’shown in Fig. 20 of Section 7 was analyzed at M, = 0.9 and a = 4.0”. 
The TRANAIR grid had about 189,000 elements. A comparison of computed 
surface pressure with wind tunnel data at two wing stations is shown in Fig. 30. The 
agreement is good considering the fact that boundary layer effects are not yet 
included in TRANAIR. The shock position at the outboard station is affected by 
the fact that the wind tunnel model had wing tip missile launchers installed but the 
panel model provided to us for the computation did not. Another configuration of 
interest is the F36 with tanks and missiles shown in Fig. 31. The grid generation 

FIG. 28. Waterline cut through grid for ONERA M6 wing, .kf ~ = 0.84, u = 3.06’. 
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required makes this case very difficult for surface-fitted grid codes. The TRANAER 
grid contained 215,960 elements. Figure 32 shows three plane cuts through the corn- 
putational grids. Figure 33 compares computed surface pressure just inboard and 
just outboard of the tank strut with TRANAIR results for the l-36 without tanks 
and missiles. The effect of the tank is as expected. 

The final case considered is flow about a 747-200 Fran ort configuration with 
wing, body, struts, and nacelles. The geometry descripti includes about 23,OOC 
panels (cf. Fig. 34) and is many times more complex than that which can be 
handled by panel codes. Flow conditions were taken x = 2.7” and M, = 3.8. 
This is approximately the largest freestream Mach r at which an inviscid 
solver can obtain accurate results without boundary layer coupling. 

The grid used for this problem consisted of approximately 219,000 finite 
elements. Figure 35 shows two cuts through the grid. The cut shown in Fig. 35-A is 
a J;Z plane cut and passes through the outboard nacelle strut and core cowl and 
through the prescribed wakes behind the inboard strut and nacelle. The cut shown 
in Fig. 35B is an xz plane cut through the outboard nacelle. 

Figure 36 compares TRANAIR results with wind tunnel pressure data at four 
span stations of the wing. Overall, one sees very good agreement with experiment. 
Most of the differences are seen in the upper surface pressures and are att 
to viscous boundary layer effects not currently modeled in TRA~~~IR. 
paring lower surface pressure profiles, one can clearly see effect of the outboard 
nacelle at the 69 % span station, which is shown in Fig. 3 Near the leading edge 
of the wing at the 69% span station the TRANAIR solution contains a supersome 
to supersonic shock whose presence is supported by the experimental data. 

10. Con 0~ rm METHOD 

Elapsed CPU times and external storage requirements of the present implementa- 
tion of the method presented in this paper are summarize in the log-log p”,ots 
shown in Figs. 37, 38, and 39. Data for the figures was obtained from single pro- 
cessor CRAY X-MP runs for almost all of the problems described in Sections 7 and 
9, as well as other typical aerodynamics applications. In ail nonlinear cases, the LZ 
norm of the residual was reduced by five orders of magnitude. For linear problems, 
ei.ght orders of magnitude reduction in residual was obtained. It should be noted 
that the method has several user-specified parameters that affect performance: for 
example, the drop tolerance used in the sparse solver, the number of ~o~tin~atio~ 
steps used in the viscosity damping strategy, and the number of Jacobians com- 
puted. In several cases where a preliminary version of grid sequencing was used, 
total CPU requirements were reduced by a factor of 2 over those reported here and 
external storage requirements by 20%. Solution CPU cost was reduced by a factor 
of 3. Two such cases are the transonic sphere and the transonic ONERA M6 wing 
discussed in Section 9. These results will be reported elsewhere. 
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FIG. 29. Comparison of surface pressure at four span stations on ONERA M6 wing, M, = 0.84, 
G[ = 3.06”: (a) plane of symmetry (root); (b) 44% span; (c) 70% span; (d) 91% span; p, FL0 28 
first-order viscosity; - -, FL0 28 second-order viscosity; 0, TRANAIR. 
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FIG. 30. Wing pressures for the F16, M,, = 0.9, G( =4.0”: (a) 45% span; (b) 71% span; -, 
TRANAIR; 0, wind tunnel test data. (Note: lines tire TRANAIR and 0 are wind tunnel test data.) 
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PIG. 31. F16 aircraft configuration with tanks and rrissiles 

Figure 37 indicates that the overhead CPU cost of the method increases hneariy 
with the number of degrees of freedom N. Overhead consists primarily of generating 
the locally refined grid and computing the finite element operators. Figure 33 sum- 
marizes the methods solution CPU time, which is the total CPU time less that for 
overhead. The least squares linear fits of the data shown in the figure indicate that 
solution CPU times increase approximately as O(N’.’ j and B(N’.“j as N -+ x for 
Einear and nonlinear problems, respectively. These data are sensitive to selection of 
a good dynamic drop tolerance in the method’s reduced set sparse solver precondi- 
tioner and we do not know if our choices are optimal. Based on asymptotic analysis 
[413 for linear problems, it is reasonable to expect solution CPU times to grow no 
more rapidly than &(N716)= 6(N’.i7). Other data 6_42] suggest that &(Xj is 
possible, however. 

The Cray SSD storage required by the method is summarized in Fig. 39. IVhile 
it is not possible to be rigorous, one sees that storage increases approximately 
linearly with N. This is sensitive to the value chosen for the drop tolerance used in 
the decomposition of the reduced set Jacobian matrix described in Section 5. The 
number of nonzeros in this matrix is usually 20 to KIN,, where N. is the number 
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FIG. 32. Cuts through the grid for the F16 with tanks and missiles, M, =0.9, ~~4.0”. 
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FK 33. Computed wing pressures for the F16 with tanks and missiles, M, =0.9, a=J.0:: 4s.) 
inboard side of strut; (b) outboard side of strut; -F, F16 without tanks and missiles; - - -~ F i6 with 

tanks and missiles. 
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Inboard Nacelle and Strut 

Top View of Wing and Body 

FIG. 31. 747200 transport configuration. 
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FIG. 35. Two cuts through TRANAIR grid for 747-200 case. 
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FIG. 37. Overhead CPU cost for TRANAIR. 

of unknowns in the reduced set. N, is usually between 0.65N and 0.7N. The choice 
of the drop tolerance is guided by the following rule of thumb, If the number of 
nonzeros in the incomplete factors of the Jacobian matrix is about twice the 
number of nonzeros in the original Jacobian matrix, the incomplete factorization is 
a good preconditioner. Each nonzero in the decomposition requires two words of 
SSD storage because of column indices. Thus, the SSD storage required for the 
incomplete factorization would be between 50N and 14ON. Were a drop tolerance 
not employed, one could expect [41] the storage requirement in this phase to be 
at least 0(Np3). This would make many of the applications considered here 
unfeasible on today’s supercomputers, since in most of the present runs storage for 
the incomplete decomposition with drop tolerance accounts for 30 to 40% of the 
total SSD space used. 

11. HELMHOLTZ APPLICATIONS 

While the present paper is devoted to aerodynamics, in two other application 
areas, acoustics and electromagnetics, similar techniques are applicable [20]. In 
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FIG. 38. TRANAIR solution CPU cost: x nonlinear problems: 3, linear prob!ems 

time harmonic acoustics with frequency w: a generalization of the scalar linear 
elmhoitz equation 

IS to be solved, where k = k(s, y, z) = w/c(x, y, z) is the wave number, C(X ;;, I) is 
the local speed oi sound, and p = p(s, I’, Z) is the density of the medium. AZ 
variables are complex valued and the variational principle involves the standard 
Galerkin functional 

J= .I (p V4 .Vq5 - k2& + I@) dV. 
R 

In this case the natural boundary condition is p(&j/Sn) = 0 and the far EeLd 
condition is the Sommerfeld radiation condition 
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FIG. 39. TRANAIR SSD storage requirements. 

as R --, Co. Results obtained in acoustics using the method can be found in 
Ref. [20, 431. 

In electromagnetics, time harmonic Maxwell’s equations with frequency o reduce 
to a generalized vector Helmholtz equation 

P’(H)=H-fiVx(crVxH)=O, (53) 

where H is the magnetic field, /? mm1 = --IUP, CI PI = zos,,,, + CJ, E is the electric per- 
mittivity, p is the magnetic permeability. and 0 is the electric conductivity. All 
variables are complex valued. For scattering from a conducting body with 
boundary do,, the functional can be taken to be 

J=& j&E-j ) , H.H dV+k ja, (H-(nxE))dS, (54) 

where E is the electric field, E = CXV x H, and the boundary condition is n x E = 0 on 
LX2, with an appropriate far field condition [44]. This is a nonstandard functional 
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that is applicable to lossy materials [45]. Results of applying the method to this 
problem can be found in [45]. 

These problems can be treated with virtually the same numerical method as that 
given above for the full potential of aerodynamics, with certain simplifications. For 
example, no artificial dissipation is needed in either acoustics or electromag~et~cs~ 
In what follows, only the main differences will be discussed. 

In both of these areas, computational experience has been limited to cases using 
a uniform grid, i.e., a grid without local refinement, even though the full local 
refinement capability is available. Because of the necessity of resolving the wave 
throughout the computational domain, such a uniform grid is not very wasteful Sor 
many problems of interest (for example, scattering from a perfect conductor). Also, 
there may be grid interface effects to be considered when local refinement is used. 

In the acoustics case, 3, the far field operator discussed in Section 3.3, is a 
constant coefficient version of the Helmholtz operator in Eq. (Xi), where the 
coefficients are those of the external medium. In electromagnetics, .F is a constant 
coefficient version of Eq. (53). 

The operator 9 in both electromagnetics and acoustics is linear and the operator 
coefficients (R, fl, p, and k’) are all functions of the spatial variables only. In the 
finite element formulation, these coefficients are approximated by piecewise 
constant functions. In many cases, only a few materials are present, so only a few- 
values of coefficients need to be stored. In acoustics, the standard trilinear element 
basis function can be used. In electromagnetics, however, the unknown is a vector 
and use of a trilinear basis function for each component results in a large stencil. 
A vector bilinear element basis function has been developed that is bilinear for each 
component of the vector. This element and the resulting discrete operator are 
escribed in detail in 1451. 
In electromagnetics, the equivalent of a stagnation region is a perfect conductor. 

oxes interior to perfect conductors do not generate D regicns, and the equation 
is simply that the field is zero there. 

The sparse solver preconditioner is used in a somewhat different way in tics 
and electromagnetics. The reduced set is defined in the same way, but the ary 
condition at closure points must be a discrete approximation to the appropriate far 
held radiation condition. When a uniform grid is used, the closure points are quite 
close to the configuration boundaries. In some cases, such as those involving interior 
resonance, this results in poor preconditioning. In these cases, the reduced set must 
be extended so that the closure points are outside the resonance region This 
phenomenon is believed to be related to the fact that the closure point radiation 
condition is not even approximately satisfied by the actual solution. 

In acoustics and electromagnetics, nested dissection is quite effective, since the 
reduced set is often just a thin layer of points near boundary surfaces. This is the 
case. e.g.7 for electromagnetic scattering from a corrducting body at a fairly high 
frequency in which a line global grid is required. This situation produces a reduced 
set that is essentially two-dimensional. Thus, the problems can often be solved 

without using a drop tolerance. When a drop tolerance is used, the resulting system 
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can become unstable without some added dissipation. This dissipation can be intro- 
duced by adding an imaginary component to the wavenumber in the N operator, 
simulating a lossy material in which waves are damped with distance and prevent- 
ing resonance. When this is done, significant degradation of the convergence rate 
results. For many large scattering problems, the SSD storage required for the sparse 
decomposition is the limiting factor for the method, so that accepting significant 
slowing of convergence is necessary to obtain an answer. 

Since these problems are linear, no Newton method is needed and a simple linear 
GMRES method is used. With a complete factorization of the reduced set problem, 
convergence is typically achieved in 10 to 20 GMRES iterations, indicating very 
good preconditioning. 

More details concerning these applications can be found in Refs. [20,43,45]. 

12. FUTURE DIRECTIONS 

The method described in this paper is fully implemented for aerodynamics 
applications in the computer program TRANAIR, which is a valuable engineering 
tool for aircraft analysis and design. Most of the method’s important algorithms 
also have been implemented for acoustics and electromagnetics applications. 
However, there are several capabilities that could substantially improve the present 
methodology and these are described here. 

As discussed above, grid sequencing decreases CPU time and external storage 
significantly and provides more reliable convergence. This procedure is imple- 
mented in TRANAIR and will be discussed in detail elsewhere. 

The current technique for generating the computational grid requires user 
knowledge of solution characteristics to input parameters that control refinement 
where it is required. While general rules about required grid can be given based on 
the type of object being modeled, this process is not easily applicable to new situa- 
tions and is suboptimal. An automatic solution adaptive refinement capability 
would greatly increase the reliability of the method and reduce its cost. Such a 
capability has been implemented and is being tested. 

At high subsonic Mach numbers, boundary layer effects substantially change 
shock strength and position. Inclusion of these effects would extend the 
applicability of the method. This will be done by coupling the current code with a 
boundary layer or thin layer Navier-Stokes capability. 

The finite element discretization discussed in this paper generalizes immediately 
to the case of higher order elements. The advantage of a Cartesian grid finite 
element method is evident since the storage required for the element stiffness matrix 
grows rapidly as the order of the element is increased. When almost all of the 
elements have the same element stiffness matrix, very large savings in storage can 
be achieved. 
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13. CONCLUSION 

A new finite element method has been presented that is designed for automatic 
generation of discretizations for complicated geometries in three space dimensions 
without using standard grid generation techniques. Computational results have 
been presented demonstrating the accuracy and reliability of the method. 
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